
Pervasive Parallelism CDT: Automatic parallelization
for heterogeneous multi-core architectures with GCC

Chris Cummins · April 13th, 2014

Abstract. In this proposal, I present a research plan to investi-
gate automatic parallelism for heterogeneous multi-core systems.
The outcome of this research would be a number of improve-
ments to the automatic parallelization optimiser in GCC. I detail
a plan and methodology for achieving these goals, and a review
of their significance, and their relevance to existing research of
this kind at Edinburgh. The purpose of this document is to be
considered for a studentship position in the Pervasive Parallelism
CDT under the supervision of Mike O’Boyle and Hugh Leather.

Introduction

It has been well understood that software developers can no longer rely on
increasing clock speeds alone to speed up single-threaded applications [1, 2].
While steady performance increases can be gained from exploiting improving
CPU cache performance [3], this growth is linear at best, and not the exponen-
tial advances that have been afforded in previous years through Moore’s Law.
Despite this, the adoption of heterogeneous concurrent programming practises
has been slow and awkward, due in large part to the clumsy nature of multi-
threaded constructs in modern programming languages, and the difficulty and
error-prone exercise of programming with them [2]. It is clear that there is
an immediate need to address the imbalance between per-core performance
and the under-adoption of concurrent programming practises. One such so-
lution is to allow compilers to automatically distribute sequential code into
multi-threaded code, relieving the programmer of the responsibility of manual
threading by providing a layer of abstraction above the processing units.

It is my hypothesis that the multi-threading of software algorithms will
increasingly be considered a facet of resource management. As such, it will
be left up to the compiler to manage the allocation and control of threads,
in the same way that modern compilers manage the allocation and control
of registers and memory in high level languages. Continuing this analogy, it
can be observed that the output of quality modern optimizing compilers often
outperform the best attempts at handcrafted assembly routines, and so it is
imaginable that automatically parallelizing compilers could generate threaded
code that would outperform the best handcrafted concurrency. This would
bring scalability to existing applications on large core count machines, while
simultaneously reducing the difficulty of writing concurrent software.

Background

Automatic parallelization is an advanced feature of optimizing compilers, that
to date is often limited to primitive loop parallelization using coarse heuristics
[4, 5]. The quintessential example of serial code that can be automatically
parallelized is a bounded loop without data dependencies:

1

CDT Pervasive Parallelism Research Proposal Chris Cummins

1 #define N 1000
2 int data [N] , i ;
3 /∗ Parallel izable loop : ∗/
4 for (i = 0 ; i < N; i++) // Finite bounds , 0 <= i < N
5 data [i] = l o n g c a l c (i) ; // No data dependencies

In this case, the loop may be parallelized by assigning different threads for
each iteration. The advantage of this parallelism is clear. We can expect to
reduce the running time of this loop by a factor of (n − 1)/n, where n is the
number of cores available. However, what is not immediately apparent from
this canned example is the increasing importance of parallelizing computation
for large core counts. If 95% of a program is parallelized, the 5% of serial code
that remains limits the potential speedup of parallelizing to 20x [6]. This does
not provide adequate throughput utilisation for the large core counts which are
being developed in modern heterogeneous systems, so it is vitally important
to achieve parallelization of as much code as is possible.

Existing implementations of automated parallelism have two key areas in
which improvements can be made:

1. Heuristics used to decide whether to parallelize code are primitive, using
simple profitability metrics of how frequently the code is executed, and
whether the number of iterations is large enough to create new threads.

2. The algorithms used to determine whether code may be parallelized do
not accurately determine data dependencies, meaning that opportunities
to parallelize code are missed.

GCC is a widely used open-source compiler, and has an implementation of
automatic parallelization which suffers from the shortcomings identified [7, 8].
In the case of both problems, previous research undertaken at the University
of Edinburgh is particularly relevant. While there has been much industry
pressure for parallelizing machine learning, no attempts have been made to
apply machine learning to automatic parallelization. Mike O’Boyle and Hugh
Leather’s research into machine learning based compilation offers a great start-
ing point for addressing these issues [9–11]. The feature grammar and genetic
algorithms used for automatic feature generation [10] can be adapted to im-
prove the parallelization heuristics, while the self-tuning Milepost GCC offers
a practical implementation of a self-tuning compiler which is capable of out
performing hardcoded heuristics [11].

Objectives

Based on the existing issues with the GCC automatic parallelization and the re-
search expertise of Mike O’Boyle and Hugh Leather, I have identified a number
of objectives as candidate outcomes for research in this area. The objectives
have been designed such that real and quantifiable results can be provided for
each.

• Improve the quality of parallelization decision logic in GCC using fine-
grained statistical heuristics that incorporate thread costs and code size
increase in the profitability metrics.

2

CDT Pervasive Parallelism Research Proposal Chris Cummins

• Apply machine learning and iterative compilation techniques to improve
the selection of parallelization optimizations.

• Aggressively increasing the number of loops which can be automatically
parallelized in GCC by using dependency reordering for associative op-
erations.

• Develop a technique for employing reusable thread pools to reduce the
thread costs of parallelizing operations.

• Implement automatic parallelization of non-innermost loops in GCC us-
ing loop collapsing.

Methodology

The first year M.Sc by Research phase would be focused towards background
research and developing a finalised project proposal with the help of the super-
visors. Supporting courses would include Compiler optimisation, Probabilistic
Modelling and Reasoning, and Threaded Programming. The PhD phase of
the degree would then be focused upon research and implementation of the
finalised project plan.

I am a flexible and self-motivated worker, having experience in both indus-
trial and academic settings of working on projects in large teams or self-directed
individual work. My ongoing experience as a regular contributor to open source
projects (Linux, GNOME, cogl, clutter) will be extremely beneficial during the
practical software development phases, having an intimate knowledge of many
open source development processes. By working in a transparent and open
source manner, I will provide regular demonstrations and feedback of progress.
I have previous experience developing low level software in C in a professional
setting at Intel Corporation, providing regular updates to technical employees
and higher level progress reports to non-technical management.

Summary

This document proposes a plan for a multi-year research project with both
academic and practical implications for the future of optimizing compilers. As
the disparity between core counts and computational throughput increases, de-
mand for tested, industry-quality tools will continue to rise, and it is important
that there are solutions ready to fit these requirements.

GCC is one of the most widely used production quality compilers available,
and its open source nature means that contributions made as the result of
this research can have a positive impact for a huge number of users, with
GCC being the standard shipped compiler collection for most GNU/Linux
systems. Additionally, practical implementations of automatic parallelizing
optimisations can serve as references to the development of other compilers
such as LLVM.

I feel fortunate in having the opportunity to participate in furthering this
field at a time in which software engineering is undergoing such a major tidal
shift, perhaps the largest single change in the programming zeitgeist since the

3

CDT Pervasive Parallelism Research Proposal Chris Cummins

transition from structured to object orientated software abstractions. I was
delighted to discover this CDT in a subject that I am so passionate about, and
in discovering the supervisors that have research interests so closely aligned
with my own. If offered a position as a research student, I would apply the
same dedication and conscientious work ethic that has led me to excel in my
previous academic and industrial experiences. I would endeavour to make a
positive contribution to this excellent University and the field of research.

Bibliography

[1] S. Akhter and J. Roberts. Multi-core Programming: Increasing Perfor-
mance Through Software Multi-threading. Books by engineers, for engi-
neers. Intel Press, 2006. isbn: 9780976483243.

[2] S. Herb. “The Free Lunch Is Over: A Fundamental Turn Toward Con-
currency in Software”. In: Dr. Dobb’s Journal 30.3 (2005). url: http:
//www.gotw.ca/publications/concurrency-ddj.htm.

[3] W. David et al. Core Count vs Cache Size for Manycore Architectures
in the Cloud. Tech. rep. Cambridge, MA 02139: Massachusetts Institute
of Technology, 2010. url: http://people.csail.mit.edu/beckmann/
publications/tech_reports/grain_size_tr_feb_2010.pdf.

[4] Automatic Parallelization with Intel R© Compilers. Intel Corporation. url:
http://software.intel.com/en-us/articles/automatic-parallelization-

with-intel-compilers.

[5] GCC Wiki. http://gcc.gnu.org/wiki/Graphite/Parallelization. [Online; ac-
cessed 8-April-2014]. 2009. url: http://gcc.gnu.org/wiki/Graphite/
Parallelization.

[6] Gene M Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20,
1967, spring joint computer conference. ACM. 1967, pp. 483–485.

[7] R. Ladelsky. Automatic Parallelization in GCC. Tech. rep. IBM Haifa
Research Lab, 2007.

[8] D. Novillo. “OpenMP and automatic parallelization in GCC”. In: GCC
developers summit. Citeseer. 2006.

[9] Peter MW Knijnenburg, Toru Kisuki, and Michael FP O’Boyle. “Iter-
ative compilation”. In: Embedded processor design challenges. Springer.
2002, pp. 171–187.

[10] H. Leather, E. Bonilla, and M. O’Boyle. “Automatic Feature Generation
for Machine Learning Based Optimizing Compilation”. In: Code Gener-
ation and Optimization, 2009. CGO 2009. International Symposium on.
IEEE Computer Society, 2009, pp. 81–91. isbn: 978-0-7695-3576-0. doi:
10.1109/CGO.2009.21.

[11] G. Fursin et al. “Milepost GCC: Machine Learning Enabled Self-tuning
Compiler”. In: International journal of parallel programming 39.3 (2011),
pp. 296–327. issn: 0885-7458. doi: 10.1007/s10766-010-0161-2.

4

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://people.csail.mit.edu/beckmann/publications/tech_reports/grain_size_tr_feb_2010.pdf
http://people.csail.mit.edu/beckmann/publications/tech_reports/grain_size_tr_feb_2010.pdf
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
http://gcc.gnu.org/wiki/Graphite/Parallelization
http://gcc.gnu.org/wiki/Graphite/Parallelization
http://dx.doi.org/10.1109/CGO.2009.21
http://dx.doi.org/10.1007/s10766-010-0161-2

